
Evolution of Web Application Architecture
PHP Unconference Hamburg

Kore Nordmann / @koredn / <kore@qafoo.com>
Spetember 19th, 2015

About Me

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Too many visitors

Evolution

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Load Balancing

I Works because of HTTP & PHP
I HTTP is LCoDC$SS
I PHP is build for shared-nothing

I Round Robin works best
I Sticky sessions will overload certain servers

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Non-sticky session – how?

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Where to put the static data?

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Static Files

I NFS will eventually lead to dead locks
I . . . still seems the most popular solution around.

I Multiple domains can hurt performance (TCP slow start)
I Using dedicated CDN providers can help

I Content locality

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

DB server too slow

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Replicate Database

I Master Slave Replication is fairly easy to set up
I Obviously only scales READs
I WRITEs are usually not your first problem

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

DB servers are too expensive

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Cache With Memcache

I Cache all the things in memory
I Cache entities
I Cache collections
I Full page cache

I Cache invalidation
There are three hard things in Computer Science:
Cache invalidation and off by one errors.

I Cache dependency calculation
I The paging problem

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Too many writes

Evolution

Sharding

I Split tables across multiple
nodes

I Shard by consistent
hashing

product

user

…

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Sharding

I Shard by table
I . . . or even shard by consistent hash per entity

I No referential integrity checking
I Queries are limited to sharding solution
I Schema updates across multiple shards are fun

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Database setup too complex

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: NoSQL

I Usually solves one problem really well:
I Sharding
I Multi-Master-Replication
I Cross-shard queries

I Usually omits:
I SQL
I Referential Integrity

I . . . we lost all relevant features from
Relational Database Management Systems
anyways. . .

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Data Consistency

Keeping data consistent across multiple storages

Data Consistency Across Nodes

?

✓?
???

Eventual Consistency

Truth Client
Updater /
Replicator

Last Revision?

<hash>

Get Updates Since <hash>

{update, revision}[]
{update, revision}[]

null

Revisions MUST
increment

strictly monotonic

Revisions MUST NOT
be stored if an
update fails.

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Data Consistency

I Embrace Eventual Consistency
I Compaction is hard
I Data migrations are hard

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

Business wants to query data

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Map-Reduce

I Execute queries on distributed databases
I New query language to learn

I Your developers write analysis scripts, instead of the business
analysts writing slow SQL queries

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Problem

How to orchestrate?

Evolution

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned: Queues

I Queues can ensure data is processed asynchronously
I Data consistency must be ensured even when pushing into

queues
I Following the data flow of an action can be “tricky”

I Used to distribute data between systems

Evolution

Microservices

Apply Seperation of Concerns on service level to allow
for seperate teams & technologies per concern.

I Microservices can simplify things:
I Choose optimal technology stack per team & concern

I Microservices will also complicate things:
I Automated deployment is a must
I Service orchestration is still a problem
I Service downtimes and latency must be handled gracefully

(Eventual Consistency)

I Big DataTM will stay a problem

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Lessons Learned (subjective)

I Boring technology choices will often work best
I Just start & stay with LAMP?

I Only bring in shiny new technologies with care
I There are enough reasons to eventually do that, though

Copyright Qafoo GmbH; All Rights Reserved
talks.qafoo.com

Conclusion

There is no conclusion

Do not jump on every bandwagon – this includes
microservices

