
These Are Not Thests You Are Looking For
International PHP Conference – Spring Edition

Tobias Schlitt (@tobySen) & Kore Nordmann (@koredn)
3rd June 2014

Software Quality

Why care?

Revenue goes down. . .

Revenue

t

Complexity

1 <?php
2 class Foo {
3 public function foo {
4 i f ($x) { /∗ . . . Code ∗/ } else {
5 i f ($y) { /∗ . . . Code ∗/ } else {
6 i f ($z) { /∗ . . . Code ∗/ } else {
7 return $x ;
8 }
9 }

/∗ . . . Code ∗/
/∗ . . . Code ∗/
/∗ . . . Code ∗/

}
}
}

($x)

Sensible Testing

Cover every line of code

I Does not mind side effects
I Does not cover different pre-conditions

Sensible Testing

Cover every execution path

I You should write at least $nPath tests for every method!
I Does not mind different parameter values

Sensible Testing

Cover every execution path with sensible
parameters

I Common integer boundaries: −263,−231,−1, 0, 1, 231, 263

I You should write at least
$nPath ∗ $parameterCount ∗ $boundaries tests per method!

sqrt()

√

E TOO MANY TESTS

WTF?

Integer Overflow

We refactored projects with a NPath complexity
> 264 in controllers

This means more then
18,446,744,073,709,551,616 execution paths!

I Development obviously was stalled. . .
I Nobody understands possible side effects any more
I This is impossible to test

Wrap-Up

I We do not require ultimate stability
I We do PHP for development speed (adaption to changes)
I We can deploy our full stack in a couple of minutes
I Refactor before complexity explodes

I What we actually should do:
I Estimate business impact of code
I Write sensible integration tests

Business Impact

I Which code has . . .
I direct impact on revenue∗?
I indirect impact on revenue∗?
I no impact on revenue∗?

∗ you might have different business goals then just revenue

Business Impact

How can a developer know?

I Familiarize yourself with the business goals
I Ask for business metrics
I Measure and watch important business metrics
I Product owner annotates business impact in user stories

Impact Of Code

I There are metrics which show the impact of code on the
system:

I Afferent Coupling (CA) / Efferent Coupling (CE)
I Code-Rank / Reverse Code-Rank

I A really “unimportant” component still might break about
everything

Testing The Full Stack

I Making sure the important stories work
I Does not ensure that everything works
I . . . but the most important bits will work!

I Large tests do not really help debugging.

Trade-Offs

S
ta

b
le

In
st

a
b

le

Low Coverage High Coverage

Unit
Test

Component
Test

UI
Test

The Test Pyramid

Unit

Component

UI

Unit

Component

UI

Effective Component Tests

I Mock at component borders
I . . . throw out the database
I . . . ignore the SOAP endpoint

I Requires:
I Sane and simple APIs (Facades)
I Dependency Inversion (Injection)

Test Driven Development

I Use TDD as a design principle
I Unit Tests always converge to Integration Tests

I You can TDD using using Unit-, Component- & UI-Tests

Summary

I Unit Tests with full coverage are a great learning tool
I Write testable code, focus on testing important bits
I Test everything which broke once
I Make sure the important business cases always work

We are

Helping people to create high quality web applications.
http://qafoo.com

I Trainings, Workshops and Consulting

http://qafoo.com

